skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guilloteau, Clément"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cold-season precipitation statistics in simulations from the storm-resolving WRF Model at 6-km and 1-h resolution over western North America are analyzed. Pseudo–global warming future simulations for the 2041–80 period, constrained by GCMs under the RCP8.5 scenario, are compared to the 1981–2020 historical simulation. The analysis focuses on the dynamical properties of precipitation time series at subdaily scales and on the morphology of storms. The statistical distribution of precipitation intensities in each pixel of the simulation domain is characterized through nonparametric statistical indicators: frequency of wet hours, mean wet-hour precipitation intensity, and Gini coefficient as a measure of the temporal concentration of the precipitation volume. Additionally, the temporal and spatial Fourier power spectra of precipitation time series and precipitation fields are analyzed. The half-power period (HPP) and half-power wavelength (HPW) are defined as spectral measures of the characteristic scales of precipitation’s temporal and spatial patterns. The results show statistically significant increases in the mean wet-hour precipitation intensity and in the Gini coefficient in 99% of the pixels, indicating that the seasonal precipitation volume becomes more concentrated within a smaller number of hours with higher precipitation intensity. The statistics of change in the frequency of wet hours are more contrasted across the simulation domain. The changes are also reflected in the power spectra, which show the spatial and temporal variability increasing proportionally more with finer spatial and temporal scales and the HPW and HPP decreasing. These projected changes are expected to have consequences, not only in terms of hydrologic impacts but also in terms of the predictability of precipitation patterns. Significance StatementThe precipitation characteristics of winter storms over the western United States and southwestern Canada are analyzed in future climate simulations for the 2041–80 period. As compared to present-day climate, the most intense parts of the storms are projected to produce a higher rainfall volume, with increased concentration over smaller areas and shorter time intervals. The propensity of rainfall intensity to vary rapidly over time will be enhanced in the future according to the simulations. These model predictions imply an increased risk of rapid flooding in small basins. They also suggest that predicting several hours ahead the time and location at which a storm will produce maximum rainfall may become more challenging in the future. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Abstract Observations of clouds and precipitation in the microwave domain from the active dual-frequency precipitation radar (DPR) and the passive Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the GPMCore Observatorysatellite are used in synergy with cloud tracking information derived from infrared imagery from theGOES-13andMeteosat-7geostationary satellites for analysis of the life cycle of precipitating cloud systems, in terms of temporal evolution of their macrophysical characteristics, in several oceanic and continental regions of the tropics. The life cycle of each one of the several hundred thousand cloud systems tracked during the 2-yr (2015–16) analysis period is divided into five equal-duration stages between initiation and dissipation. The average cloud size, precipitation intensity, precipitation top height, and convective and stratiform precipitating fractions are documented at each stage of the life cycle for different cloud categories (based upon lifetime duration). The average life cycle dynamics is found remarkably homogeneous across the different regions and is consistent with previous studies: systems peak in size around midlife; precipitation intensity and convective fraction tend to decrease continuously from the initiation stage to the dissipation. Over the three continental regions, Amazonia (AMZ), central Africa (CAF), and Sahel (SAH), at the early stages of clouds’ life cycle, precipitation estimates from the passive GMI instrument are systematically found to be 15%–40% lower than active radar estimates. By highlighting stage-dependent biases in state-of-the-art passive microwave precipitation estimates over land, we demonstrate the potential usefulness of cloud tracking information for improving retrievals and suggest new directions for the synergistic use of geostationary and low-Earth-orbiting satellite observations. 
    more » « less
  4. Abstract Wildland fire–atmosphere interaction generates complex turbulence patterns, organized across multiple scales, which inform fire-spread behaviour, firebrand transport, and smoke dispersion. Here, we utilize wavelet-based techniques to explore the characteristic temporal scales associated with coherent patterns in the measured temperature and the turbulent fluxes during a prescribed wind-driven (heading) surface fire beneath a forest canopy. We use temperature and velocity measurements from tower-mounted sonic anemometers at multiple heights. Patterns in the wavelet-based energy density of the measured temperature plotted on a time–frequency plane indicate the presence of fire-modulated ramp–cliff structures in the low-to-mid-frequency band (0.01–0.33 Hz), with mean ramp durations approximately 20% shorter and ramp slopes that are an order of magnitude higher compared to no-fire conditions. We then investigate heat- and momentum-flux events near the canopy top through a cross-wavelet coherence analysis. Briefly before the fire-front arrives at the tower base, momentum-flux events are relatively suppressed and turbulent fluxes are chiefly thermally-driven near the canopy top, owing to the tilting of the flame in the direction of the wind. Fire-induced heat-flux events comprising warm updrafts and cool downdrafts are coherent down to periods of a second, whereas ambient heat-flux events operate mainly at higher periods (above 17 s). Later, when the strongest temperature fluctuations are recorded near the surface, fire-induced heat-flux events occur intermittently at shorter scales and cool sweeps start being seen for periods ranging from 8 to 35 s near the canopy top, suggesting a diminishing influence of the flame and increasing background atmospheric variability thereat. The improved understanding of the characteristic time scales associated with fire-induced turbulence features, as the fire-front evolves, will help develop more reliable fire behaviour and scalar transport models. 
    more » « less
  5. Abstract The feedback of topsoil moisture (SM) content on convective clouds and precipitation is not well understood and represented in the current generation of weather and climate models. Here, we use functional decomposition of satellite‐derived SM and cloud vertical profiles (CVP) to quantify the relationship between SM and the vertical distribution of cloud water in the central US. High‐dimensional model representation is used to disentangle the contributions of SM and other land‐surface and atmospheric variables to the CVP. Results show that the sign and strength of the SM‐cloud‐precipitation feedback varies with cloud height and time lag and displays a large spatial variability. Positive anomalies in antecedent 7‐hr SM and land‐surface temperature enhance cloud reflectivity up to 4 dBZ in the lower atmosphere about 1–3 km above the surface. Our approach presents new insights into the SM‐cloud‐precipitation feedback and aids in the diagnosis of land‐atmosphere interactions simulated by weather and climate models. 
    more » « less
  6. Abstract The quantitative estimation of precipitation from orbiting passive microwave imagers has been performed for more than 30 years. The development of retrieval methods consists of establishing physical or statistical relationships between the brightness temperatures (TBs) measured at frequencies between 5 and 200 GHz and precipitation. Until now, these relationships have essentially been established at the “pixel” level, associating the average precipitation rate inside a predefined area (the pixel) to the collocated multispectral radiometric measurement. This approach considers each pixel as an independent realization of a process and ignores the fact that precipitation is a dynamic variable with rich multiscale spatial and temporal organization. Here we propose to look beyond the pixel values of the TBs and show that useful information for precipitation retrieval can be derived from the variations of the observed TBs in a spatial neighborhood around the pixel of interest. We also show that considering neighboring information allows us to better handle the complex observation geometry of conical-scanning microwave imagers, involving frequency-dependent beamwidths, overlapping fields of view, and large Earth incidence angles. Using spatial convolution filters, we compute “nonlocal” radiometric parameters sensitive to spatial patterns and scale-dependent structures of the TB fields, which are the “geometric signatures” of specific precipitation structures such as convective cells. We demonstrate that using nonlocal radiometric parameters to enrich the spectral information associated to each pixel allows for reduced retrieval uncertainty (reduction of 6%–11% of the mean absolute retrieval error) in a simple k-nearest neighbors retrieval scheme. 
    more » « less
  7. null (Ed.)
    Abstract Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatiotemporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results, especially when several modes of similar amplitude exist within the same frequency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness). The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height (GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby waves at high frequencies (3–60-day periods) in both GPH and SST and El Niño–Southern Oscillation (ENSO) at low frequencies (2–7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing spatially coherent patterns with robust propagation dynamics. 
    more » « less
  8. Abstract The Madden‐Julian Oscillation (MJO) is the leading mode of intraseasonal climate variability, having profound impacts on a wide range of weather and climate phenomena. Here, we use a wavelet‐based spectral Principal Component Analysis (wsPCA) to evaluate the skill of 20 state‐of‐the‐art CMIP6 models in capturing the magnitude and dynamics of the MJO. By construction, wsPCA has the ability to focus on desired frequencies and capture each propagative physical mode with one principal component (PC). We show that the MJO contribution to the total intraseasonal climate variability is substantially underestimated in most CMIP6 models. The joint distribution of the modulus and angular frequency of the wavelet PC series associated with MJO is used to rank models relatively to the observations through the Wasserstein distance. Using Hovmöller phase‐longitude diagrams, we also show that precipitation variability associated with MJO is underestimated in most CMIP6 models for the Amazonia, Southwest Africa, and Maritime Continent. 
    more » « less